藏傳因明典籍中的反駁論證探析
作者:達哇
對形式邏輯而言,其反駁方式有兩種,即歸缪法反駁方式和矛盾法反駁方式。藏傳因明的反駁論證也不外此兩種,但其中最具特色的要屬歸謬法反駁方式。凱珠傑在《因明七論除意暗莊嚴疏》中,對敵論者將湖中的青霧當作煙而斷定的“湖中有煙”的判斷列出的反駁論式是:“有青霧的湖中應該有火,因爲有煙。”[i]這個反駁論式,並沒有直接反駁對方的論題,而是將對方的“湖中有煙”這一判斷當作真,從而推出了一個與此判斷有必然聯系的“湖中有火”的結論來。而這個結論是與事理相違背的,是不可能的,所以,從這個結論的虛假性可以順理成章地推出“湖中有煙”這一判斷的虛假性。
歸缪法反駁方式雖然具有如此重要的邏輯意義,但藏傳因明也並不單單討論歸缪法反駁方式,它同樣也討論矛盾法反駁方式。因爲在藏族理性文化中,直接論證已失去了它原有的價值,它基本已被具有矛盾法意義的間接反駁所取代。
一、 歸謬法反駁論證
(一)具有等值前提的歸缪法反駁論證
具有等值前提的歸謬法反駁論證,是指反駁論式的大前提換質位後可以構成一個真直接論證式的大前提的反駁論證。對于直接論證式大前提和具有等值前提的歸謬法反駁論式的大前提之間的轉換關系,我們可以通過一個例證進行說明。例如,對于認爲“蘇格拉底爲不死”的論斷提出的“蘇格拉底應該沒有生命,因爲他是不死的”這一反駁論式來說,“如果是不死的,那麼就沒有生命”是這一反駁論式中的大前提,這個大前提如果換位成直接論證式的大前提的話,那麼以上反駁論式的直接論證形式就是:“蘇格拉底是不死的,因爲他沒有生命”。顯然,這個直接論證是不能成立的,也就是說,這個直接論證式不是一個真直接論證式:因爲其大前提“如果沒有生命,那麼就是不死的”雖然成立,但其小前提“蘇格拉底沒有生命”不能成立,所以其結論“蘇格拉底是不死的”也必然不成立。但我們在上面說過,這類歸缪法反駁論式的大前提換質位後可以成爲一個真直接論證式的大前提。“蘇格拉底是不死的,因爲他沒有生命”論式之所以不能成爲一個真直接論證式,原因就是我們對原反駁論證式的大前提只進行了換位,沒有進行換質,所以,現在我們對“如果沒有生命,那麼就是不死的”再進行換質時,那麼就會成爲“如果有生命,那麼就是有死的。”而這個判斷就可以構成“蘇格拉底是有死的,因爲他有生命”這一真直接論證式。
對于以上的轉換過程,藏傳因明總結出這樣的規則:轉換後的直接論證式中的大詞,是由具有等值前提的歸謬法反駁論式中的中詞的反面構成,直接論證式中的中詞,是由具有等值前提的歸謬法反駁論式中的大詞的反面構成。這一點從上面的兩個論式中就可以得到清楚的說明:“不死的”是以上反駁論式中的中詞,其反面就是“有死的”,而“有死的”在直接論證式中充當著大詞;同樣,“沒有生命”是以上反駁論式中的大詞,其反面就是“有生命的”,而“有生命的”在直接論證式中充當著中詞。以S代表具有等值前提的歸謬法反駁論式中的小詞,P代表大詞,M代表中詞,那麼,具有等值前提的歸謬法反駁論式與由其轉換的直接論式之間的關系圖如下:
具有等值前提的歸謬法反駁論式轉換成直接論證式的意義就在于,與被反駁論題(在反駁論證中充當小前提)的論據等值的論據不僅不能使被反駁論題成爲真,反而使與被反駁論題相矛盾的論題成爲真,這使被反駁論題顯得更加荒謬、更加虛假和更加不合事理。
具有等值前提的歸謬法反駁論證與由其轉換的直接論證之間雖然具有等值的大前提,但是具有等值前提的歸謬法反駁論證的思維過程仍然是獨立的,其思維過程如下:
作爲具有等值前提的歸謬法反駁論證,它必須要具備兩個條件:第一、其小前提必須是敵論者所承許的論題,也就是說小前提必須是被反駁論題,並且必須是一個虛假判斷。如果小前提不虛假,那麼直接論證所要論證的與小前提相反的的論題就不能成立;第二、其大前提必然要真實(即中詞與大詞間要有必然的聯系),如果大前提不真實,那麼小前提(被反駁論題)和反駁論題之間就失去了必然的聯系。如果小前提(被反駁論題)和反駁論題之間沒有了必然的聯系,那麼即使否定了反駁論題的真實性也不能使小前提(被反駁論題)成爲虛假。再說,如果大前提不真實,那麼直接論式中的大前提也必然成爲不真實,因爲歸謬法反駁式的大前提和直接論證式之大前提之間具有等值關系,它們中的一方不真實時另一方也必然不真實。
通過以上的分析和探討,我們可以總結出具有等值前提的歸謬法反駁論證的以下幾個特點:第一,對于具有等值前提的歸謬法反駁論證來說,反駁論證和被反駁論題之間必須要有共同的主詞。如果沒有了共同的主詞,那麼這個反駁論證就不可能成爲一個真具有等值前提的歸謬法反駁論證。例如,“蘇格拉底是不死的”是一個判斷,“如果是人,那麼是不死的”是另一個判斷,那麼前一個判斷因爲有主詞“蘇格拉底”,所以可以構成一個真具有等值前提的歸謬法反駁論證,而後一個判斷因爲沒有主詞,所以不能構成一個真具有等值前提的歸謬法反駁論證;第二,反駁論證的小前提必須由被反駁論題構成,如若不然,就不是具有等值前提的歸謬法反駁論證;第叁,具有等值前提的歸謬法反駁論證的被反駁論題必須是一個具有單稱判斷性質的錯誤判斷。
(二)不具有等值前提的歸缪法反駁論證
這種歸謬法反駁論證是凱珠傑在《因明七論除意暗莊嚴疏》中強調的一種歸缪法反駁[ii],這種歸謬法反駁論證與前一種歸謬法反駁論證有兩個主要不同點:1、對于前一種歸謬法反駁論證來說,被反駁論題構成其小前提,而對于後一種歸謬法反駁論證來說,被反駁論題構成其大前提;2、對于前一種歸缪法反駁論證來說,其大前提被換質位後可以構成一個真直接論式的大前提,並且由于兩個大前提都是真的,所以它們之間具有等值關系,而對于後一種歸缪法反駁論證來說,其大前提被換質位後不能構成一個真直接論式的大前提,並且由于兩個大前提都是假的,所以它們之間不存在等值不等值的問題。
現在我們通過一個例子來說明和揭示不具有等值前提的歸缪法反駁論證。假如,“蘇格拉底是不死的”和“如果是行星,那麼就有衛星”是兩個需要反駁的論題,那麼,第一個論題由于是單稱判斷,所以駁斥它的最有效反駁論證只能是具有等值前提的歸謬法反駁論證,而不是不具有等值前提的歸缪法反駁論證或矛盾法反駁論證。相反,第二個論題由于是全稱判斷,所以駁斥它的最有效反駁論證只能是不具有等值前提的歸缪法反駁論證,而不是具有等值前提的歸缪法反駁論證或矛盾法反駁論證。從藏傳因明的角度來說,反駁第一個論題的有效反駁論證有兩種:一爲“蘇格拉底應該沒有生命,因爲他是不死的”,一爲“蘇格拉底是必死的,因爲是動物之一”。在這兩個反駁論證中,前者是具有等值前提的歸缪法反駁論證,後者則是後面將要講到的矛盾法反駁論證。也就是說,兩者都不是現在正在討論的不具有等值前提的歸缪法反駁論證。反駁第二個論題的有效反駁論式也有兩種:一爲“是行星未必有衛星,因爲金星是行星,但它並沒有衛星”,一爲“金星也應該有衛星,因爲它也是行星”。這兩個反駁論證中,前者是矛盾法反駁論證,後者則是我們現在正在探討的不具有等值前提的歸缪法反駁論證。
“金星也應該有衛星,因爲它也是行星”這一論式,因爲是不具有等值前提的歸缪法反駁論式,所以它與“蘇格拉底應該沒有生命,因爲他是不死的”這一論式之間的區別是顯著的:1、具有等值前提的歸缪法反駁論式與被反駁論題之間的主詞是同一的,如“蘇格拉底是不死的”是被反駁論題時,那麼“蘇格拉底應該沒有生命,因爲他是不死的”則是其反駁論式,它們的主詞都是“蘇格拉底”。而不具有等值前提的歸謬法反駁論式與被反駁論題之間則不具有這種情況,如,被反駁論題是“如果是行星,那麼就有衛星”之時,那麼其最有效反駁論式則是“金星也應該有衛星,因爲它也是行星”。顯然,被反駁論題沒有主詞,而反駁論式則另設“金星”爲主詞;2、具有等值前提的歸缪法反駁論式將被反駁論題當作其小前提來進行反駁,如,被反駁論題是“蘇格拉底是不死的”時,其反駁論式是“蘇格拉底應該沒有生命,因爲他是不死的”。此反駁論式中,“蘇格拉底是不死的”既是其小前提,又是被反駁論題。而不具有等值前提的歸缪法反駁論式則將被反駁論題當作其大前提來進行反駁的,如,被反駁論題是“如果是行星,那麼就有衛星”時,那麼,其反駁論式則是“金星也應該有衛星,因爲它也是行星”。此論式中,“是行星就有衛星”或“如果是行星,那麼就有衛星”既是其大前提,又是被反駁論題;3、具有等值前提的歸缪法反駁論式相當于形式邏輯中的對論題的反駁,而不具有等值前提的歸缪法反駁論式則相當于形式邏輯中的對論據的反駁。
二、 矛盾法反駁論證
與歸謬法反駁論證不同的是,任何矛盾法反駁論證都不能轉換成一個真直接論證式。也就是說,任何矛盾法反駁論證的大前提被換質位後都不能構成一個真直接論證式的大前提。色·昂旺紮西在《因明學概要及其注釋》中說;“其(反駁論式)大詞的反面成爲(直接論式之)欲知主詞的中詞,其中詞成爲欲知主詞的大詞時,不具備理由之叁項條件之反駁論式就是不具有等值前提的反駁論證。”[iii]這裏所說的“不具有等值前提的反駁論證”有兩個所指,一個是指前面所說的不具有等值前提的歸缪法反駁論證,另一個則是指現在所說的矛盾法反…
《藏傳因明典籍中的反駁論證探析(達哇)》全文未完,請進入下頁繼續閱讀…