..续本文上一页立和独立存在的无所不在的信念称之为个别论,他确信这是我们在量子力学上遇到的许多困难的根源。他特别有效地指出,量子客体之间基本的联系性,以及要达到对量子力学的正确理解必须抛弃个别论。DHoward1985年的论文也包含了类似的观点。
我认为,彼此之间独立存在的观念,——Howard称之为爱因斯坦的分离性、Teller称之为个别论,——以及完备性的观念,在中观宗确定的内在存在中都是基本的成分。内在存在及其否定是比科学哲学所关注的更加宽广的一组问题。但是在现代科学哲学家和中观宗行者共同关注的领域中,他们所讨论的完全是同一个问题,不管你称之为内在的存在、分离性、完备性或者个别论。以下两节讨论实验和量子力学是如何否定内在存在的。
四、相关性实验
〖CR003,X,BP#〗本节包含一个有关检验量子力学概念基础实验的非技术的讨论。虽然描述是经过调整的,但它忠于实验的物理学精神。感谢David Mermin,我们可以不受物理学和数学的技术限制而严格地表述贝尔不等式的哲学精神。在本节及下节中,我把他的著作中的内容抽提出来并予以扩展。
这个实验包含了三个主要成分。图1显示一个产生相关光子对的光子源置于在两个同样的偏振检测器中间,成一直线。(相关意味着什么下面就清楚了。现在我们可以说一开始在一起的光子之间即使在分开之后也能保持某种确定的关系。)相关光子对同时由光子源发射,每一个朝向一个偏振检测器。
贝尔分析的一个魅力是,它不需要描述或理解偏振性或检测器的物理性质。关于实验装置,我们所需要知道的是,每一次光子进入检测器都会记录下+或-。虽然如此,如果知道这点就会更好:即每一个检测器象偏振太阳镜一样作用,只会透过落到其上的某些光线。如果光子通过,检测器记录+,要是没通过,就记录-。正如偏振太阳镜一样,偏振检测器的效果随其围绕光子运行的路线旋转而改变。每一个检测器可以在A、B、C位置之间迅速切换,从光子源看过去方向依次相差120度。(见图1)一次只能有一个切换。任何一次切换每一个光子落在检测器上都只能记录+或-。
实验以下述方式进行:相关光子对同时送往每一个检测器。在光子达到检测器之前每一个旋钮独立地和随机地重新调整。每一个偏振检测器独立和随机地调整意味着9种可能的组合将会平等地发生。它们分别是A-A、A-B、A-C、B-A、B-B、B-C、C-A、C-B、C-C,其中第一个字母代表左边检测器的旋钮,第二个字母代表右边的旋钮(例如B-C表示左边检测器定于B,而右边检测器定于C)。数量极多的光子对送往检测器,反应被记录下来。任何一次我们只可以测量到如下的检测器反应:++、+-、-+、和--;其中例如+-意味着左边光子通过了检测器而右边则没通过。这些就是实验的主要思想。
与实际的实验一致,把距离和旋钮确定的准确时间安排成在旋钮确定之后,信号以光速运行传播也无法从左边检测器在右边被检测之前到达检测器。既然光速被假定为任何影响或信息传播速度的上限,这就保证了在不同检测器上旋钮确定和测量之间不可能存在通讯,一个检测器的旋钮确定和测量不会对另一个检测器旋钮确定和测量产生影响。例如,假设检测器相距一光年之遥,检测器重新随机确定1秒之后进行测量。检测器重新确定在一边,测量的事件发生在另一边,依照相对论在四维时空中具有类空(space-like)分离性,在类空分离的事件之间通讯行为不可能发生。假定光速是物质作用或通讯传播速度的上限,这是对局域隐变量理论和量子力学同样适用的普遍假定。这得到了理论和实验的压倒性支持。正如下面将清楚显示的那样,排除两次测量或旋钮确定之间的物理关联或“共谋”的能力在解释中是至关重要的。
五、局域隐变量解释:贝尔不等式
局域隐变量理论在物理实在论中有其根源——对应于一个独立于观察者的世界,一个具有确定的、在测量之外完全可以说明的属性的世界。这自然导致对于一个完备性理论的要求,即一个系统所有可以测量的属性在独立于测量的理论中可以得到完全的说明。或者用EPR的使用可以保证系统的属性独立于类空分离事件的局域性原则,来建立物理实在的要素。
在眼下的事例中,完备性和局域性允许我们假定偏振性(它决定一个光子是否可以通过特定位置上的检测器,检测器是否记录+或-),对于光子是内在或固有的,是独立于类空分离的旋钮确定或事件的。换言之,我们是在体现爱因斯坦的要求“空间上有距离的事物之间的相互独立存在。”在一边的一个光子按假定具有一种确定的偏振性,它是先于并独立于在另一边的测量的。假定光子的这种内在属性独立于特定的旋钮确定和远处的测量结果,这自然得我们对此不加思考;但这种“起源于日常思维的”似乎清白无辜的假定,按照爱因斯坦的观点,正是局域隐变量理论的核心。
在附录中,我提出了贝尔不等式的一个简单形式的非技术的变种,它仅仅假定了局域性和相互独立存在(确定的偏振性独立于测量)。虽然这个变种是严格的,它只要求基本的高中数学。这种简单形式的贝尔不等式预测至少1/3的光子应该记录为同样的符号,如果在两个检测器中随机设定的旋钮是不同的话。测量的结果准确地显示只有1/4的光子记录了同样的符号,当旋钮不同的时候。
但是我们如何来理解实验对建立在这种似乎“不证自明”假定基础上的不等式的破坏呢?作为准备的尝试,我们可能会说,当对相关光子对中第一个光子进行测量时,第二个光子迅速变为相关的状态,从而改正了统计结果(1/4)。但是在实验中,时间的安排使得第二个光子的测量与第一个光子的测量之间具有一种类空的分离,因此有关什么是“合适的相关状态”的信息传播一定比光速更快——这在任何人看来都是严重的问题。问题甚至更为严重,因为正如我在附录中所显示的那样,假定局域性和独立存在就蕴涵着第二个光子已经具有了完全确定的、与第一个光子同样的偏振状态。在这两个假定下,光子不能只是简单地象变色龙一样在最后时刻改变其偏振状态,从而改正统计结果。局域性或独立存在(或者二者)在自然中一定遭到了破坏。
在下一节中,我检查更加精致的相关光子模型,但是结论仍然成立。在光子之间存在着神秘的关联性或非局域性。它们的表现不象分离的实体而更象相互联系的整体——但是我们在每一个检测器上测量粒子般的实体。正如我在下一节中所强调的,我们本能地把光子实体化为具有“相互间独立存在的”完全确定的实体。这使得要从我们在如此彻底投入了独立存在信念的世界的经验中建立一个相关光子的模型根本不可能。虽然如此,在下一节中,我尝试用空性的观点来详细阐明我们对这一神秘现象的理解。
这里必须强调两点:首先,对贝尔不等式的否定并不依赖于量子理论,虽然对这种实验的考虑当然是由量子理论的特殊性质所激发的。其次,这些结果并非局限于亚-微观领域,因为检测器分离达13米之远。这里讨论的量子效应通常并不在宏观领域中出现,但是在原则上和在实际上,它们并非局限于微观世界中。
对于局域隐变量理论及其局域性和完备性的假定,量子客体独立于类空分离的事件具有一个完全确定的性质,换句话说,它们内在地存在着。实验对贝尔不等式的否定要求对这些假定放宽一个或全部放宽。正如我下面所强调的,放宽这些假定其中之一就是承认量子客体具有根本的相关性或相对的相关性——这是对它们空性或缺乏内在存在的断言。
六、比较与应用
中观宗和实验对贝尔不等式的破坏二者,都向我们最珍视的实在性原则——独立的或者内在的存在——提出了尖锐的挑战。但是物理学只研究物质领域,而中观则分析一切人类经验;所以比较能走多远呢?不仅如此,虽然局域隐变量理论及其完备性和局域性的假定是站不住脚的,但就实验对贝尔不等式否定的后果并未达到完全的一致意见。对于量子力学的哲学意义也还有许多争论。在我们对贝尔不等式破坏的理解这个阶段上,以及我们目前对量子力学本身的理解水平,我们可以有理由肯定什么呢?在本节中,我将部分地回答这些问题,强调这些事实依赖于我们目前对物理学的理解,开始将中观的空性教义应用于对贝尔不等式和量子力学的解释,并将其与由Paul Teller和其他人发展的量子力学的哲学结合在一起。
在接下来的段落中,我只提供反对决定论的局域隐变量的例子,正如贝尔在他1964年的分析中所做的那样。在这些理论中,假定光子离开光子源之后偏振性具有一种确定值。例如,附录表1中第一列显示光子8种可能的偏振性确定状态,光子完全决定了检测器对于一个给定的位置反应。在稍后的工作中,贝尔和其他人分析了更加普遍的局域随机隐变量理论。这些同样被实验所排除的理论,只给出了检测器反应的这样的概率,它们依赖于光子和检测器位置的一些更加普遍的状态。光子不是被看作携带一种偏振性的确定状态;所以我们将我们的注意力转移到检测器反应的概率上来。现在完备性和局域性的概念变得更加微妙了,但是感谢Jarret和Shimony,我们准确地知道在这些局域随机隐变量理论中独立性的假定如何进入了贝尔不等式。假定了三种型式的独立性:
1, 一侧检测器反应的概率独立于另一侧开关的位置。
2, 光子源发出的概率的统计混合独立于两侧检测器的开关位置。
3, 一侧检测器反应的概率独立于另一侧检测器的反应。
分析显示,局域性只要求第一种和第二种独立性,这同样也为…
《中观佛教和量子力学:对话的开始(维克多·曼斯菲尔德)》全文未完,请进入下页继续阅读…