..續本文上一頁到。如果是這樣的話(一個極微的地方,六個極微共同占滿),那麼這六個極微合上去,等于沒有合,都在原先那個極微的地方。
“應諸聚色如極微量”,堆攏來的這七個極微,跟原來那個極微的大小還是一樣,因爲都在一個地方,“展轉相望不過量故”,它們互相對看的話,都在一處,沒有超過原來的大小。
“則應聚色也不可見”,這樣子的話,你堆了半天聚攏來的這些色,跟原來極微一樣大,還是看不到。你堆了半天,那是白白堆。假使堆到大起來了,有方分可分,那就“可見”,這個極微就不是一。
因爲他們的主張是極微不可再分,所以論主就駁斥說,如果一個極微可以跟它的六方六個極微相合的話,那麼它至少可以分六分;如果說就在一個極微的地方,有六個極微與它合聚,堆了半天,還是原來那麼大,沒有六方,當然就堆不大。所以,都有毛病。
“迦濕彌羅國毗婆沙師”,就是舊的有部,他們又救說,“非諸極微有相合義,無方分故”,極微是極小的一個粒子,只有這麼一點,沒有長短高下、沒有方分,不能分東南西北,“離如前失”,你說“極微是可以分”,這個過失我們就避免掉了;沒有方分,什麼東邊合、南邊合等等六個地方合的情形,就沒有了,“但諸聚色有相合理”,但是合攏來的大的色,它們有方分了,那是可以合的。就是說小的極微不能合,大的極微可以合。
這是有部的糾正方案。前面說,極微能合的話,它就可以分六方;如果極微不能分的話,那聚色也就是極微,它們一樣大,還是看不到。那麼他爲了避免前面的過失,就說極微是不可分,你說極微可以分六分,那是沒有的事情,而聚色則是可以合的,它有方分了。他這樣子說,以爲可以把前面的過失都避免掉。
此亦不然。頌曰:
⑿極微既無合 聚有合者誰 或相合不成 不由無方分
“此亦不然”,你雖然這樣子來修正,還是錯的,還是不對頭。反正極微本身是不存在的,你再怎麼地修改也不行。怎麼樣子不對?論主又用一個頌來回答:“極微既無合,聚有合者誰,或相合不成,不由無方分”。這個頌,前兩句正破有部的那個糾正方案,後兩句是假設他還要救,再破斥還是不行。
論曰:今應诘彼所說理趣。既異極微無別聚色,極微無合,聚合者誰?若轉救言,聚色展轉亦無合義,則不應言,極微無合,無方分故。聚有方分亦不許合,故極微無合,不由無方分。是故一實極微不成。又許極微合與不合,其過且爾,若許極微有分無分,俱爲大失。
“今應诘彼所說理趣”,你這麼說,我到要追問一下。“既異極微無別聚色,極微無合,聚合者誰?”你說極微是沒有方分、不能合的,而聚攏來的粗的色有方分、可以合,那麼現在請問:你這個聚色就是極微堆起來的,離開極微就沒有聚色,極微是不能合的,那麼這個聚色是哪個來合?
聚色並不是離開極微的另外一個東西,它就是極微堆出來的,它裏邊都是極微,極微既然不能合,聚色怎麼能合?意思跟這個比喻差不多:一個瞎子看不見,一萬個瞎子還是看不見。這就把它破掉了。
後兩句頌“或相合不成,不由無方分”是假使他還要救的話,論主預先就把它破掉。
“若轉救言”,假使你再救說,“聚色展轉亦無合意”。有部被逼得不好說話了,就說聚色也是不能合的。“則不應言“極微無合無方分故””,既然聚色也不能合,那麼你先前說的“極微不能合,是因爲它沒有方分的緣故”這個話就不好說了。
“聚有方分亦不許合,故極微無合,不由無方分”,聚色有方分都不能合,那麼極微的不能合,它的理由就不能是由于極微沒有方分。聚色是有方分的,也不能合,你不能說極微之所以不合,是因爲極微沒有方分。你這個話根本就不合理,所以說極微不能合,不是因爲它沒有方分(“無方分”就是既沒有面積、又沒有體積,最小的點子),不是由于這個道理。
這樣搞了半天,你這個極微,左也不是,右也不是,那就是什麼?“極微”不能成立!極微這個東西本身就是不成立的東西,你怎麼說都不行。
“是故一實極微不成”,所以,歸根結底,你們所執著的一個不能再分、實在有的極微是不能成立的。
這是把他們的“極微”破掉了,下邊再進一層地破。
“又許極微合與不合,其過且爾”,你們說極微能合或者不能合,它的過失尚且如此,“若許極微有分無分,俱爲大失”,如果再許可極微有方分或沒有方分(“方分”,體積、面積),就有更大的過失。
所以者何?頌曰:
⒀極微有方分 理不應成一 無應影障無 聚不異無二
“所以者何?”他們就問:你說若許極微有分無分還有更大的過失,過失在哪裏?論主以一個頌來回答。
“極微有方分,理應不成一”,假使極微有方分的話,就有東南西北上下,東邊是一塊,南邊又是一塊……,至少有六分,那就不能成一。你們說極微是一、不能分的,就不對了。
“無”,假使“極微無方分”,極微沒有方分的話,“應影障無”,它的影子應該也沒有,它障礙的作用應當也沒有。
“聚不異無二”,假使這個“聚”(聚色,就是極微堆合而成的粗的色)“不異”極微的話,那麼這個聚色也應“無二”——也不能有“障”、也不能有“影”。那樣的話,一切物質都沒有影子、不能障礙,都成了跟心王、心所一樣的東西。所以說還是不能成立,這也是一個大過失。
這裏我們可以看出,他的辯論方式,經常用這個方式,說“多”或者說“一”,是“一”的話有什麼過失,是“多”的話又有什麼過失;若“有方分”的話有什麼過失,若“無方分”的話又有什麼過失。辯論到最後,說有也不是,說沒有也不是,那就是沒有極微這個東西了。因爲它左也不是,右也不是,你說這個東西是什麼東西?
論曰:以一極微,六方分異,多分爲體,雲何成一?若一極微,無異方分,日輪纔舉,光照觸時,雲何余邊得有影現?以無余分,光所不及;又執極微無方分者,雲何此彼展轉相障?以無余分,他所不行,可說此彼展轉相礙。既不相礙,應諸極微,展轉處同,則諸色聚同一極微量,過如前說。
雲何不許影障屬聚,不屬極微?豈異極微,許有聚色發影爲障?不爾。若爾,聚應無二。謂若聚色不異極微,影障應成,不屬聚色。覺慧分析、安布差別,立爲極微,或立爲聚,俱非一實。
“以一極微,六方分異,多分爲體,雲何成一?”假使一個極微,有東、南、西、北、上、下六個方面好分,既然有六方好分(多分爲體),東是東、南是南……,那麼這個極微就是可分的了,還怎麼能叫“一”?
因爲有部和經部都認爲極微是最小的粒子,是不能再分的;假如說它是有方分的,那就還可以分,就不能成“一”。
“若一極微,無異方分”,假使這個極微沒有方分的話。它沒有東南西北上下,就是很圓的小點子,猶如數學上的一個最小的點子,東就是南,南就是北,西就是東,上就是下,既沒有面積,也沒有體積,沒有前後、左右,等等,這些都沒有。若是這樣的東西,就有問題了。
“日輪纔舉,光照觸時,雲何余邊得有影現?”太陽剛剛一升起來,照到這樣的一個物質上邊的時候,怎麼會出現照到的一邊有光,而另外的一邊卻有影子出來?“以無余分,光所不及”,因爲極微是沒有方分的那麼一個東西,陽光一照,就全部都照完,沒有陽光不能到達的地方,那麼一邊有光、一邊有影的情況就不可能了。而我們事實上看到的一切物質,都是光照過來,這邊受光,那邊就有影子出現。那就是“極微無異方分”這個話也不對。
“又執極微無方分者”,假使你執極微沒有方分,還有一個毛病,“雲何此彼展轉相障?”它們兩個東西怎麼能成障礙?既然它們都沒有方分,那就應當沒有障礙。什麼道理?“以無余分,他所不行,可說彼此展轉相障”,因爲沒有其它的地方,是它所不能到的,碰到東邊就已經碰到西邊,碰到南邊就已經碰到北邊,碰到裏邊就已經碰到外邊……,沒有方分的,碰到一邊,全體都到,還怎麼障礙?還障礙什麼?比如說牆壁,障住我們在裏邊出不去,若依你所說,碰到裏邊就是碰到外邊,那它還怎麼能障住我們在裏邊出不去?應當沒有障礙了。
這在窺基法師的解釋(《述記》)裏邊說:“以微所擬,東非東等,左手之東即是西等,無此一分非是左手他不行處。以西即東,故樹東應至西,故二相擊,定無相障。”兩手相拍,碰到手掌,手背就沒碰到,假使你說沒有方分的話,那碰到手掌就碰到手背,那就障不住,也拍不響了。
“既不相礙,應諸極微,展轉處同”,既然都不相障礙,極微的大小都一樣,它們要堆起來,都在原來那個地方,“則諸色聚同一極微量”,那麼這個由極微所集成的大的聚色,也只能是一個極微那麼大。“過如前說”,這個過失前面說過了。再多的極微堆起來,還是那麼大,因爲還是在原來那個地方,堆不大的;如果能堆大的話,要有方分,沒有方分就聚不起來。
這麼說了之後,他們還不服氣:“雲何不許影障屬聚,不屬極微?”你怎麼不允許我們說這個影、障是屬于聚色,而不是屬于極微?“極微無分,(影障)不屬極微”,極微沒有方分,極微沒有影子,我們承認,極微不能障礙,我們也承認;“聚有方分,影障屬聚”,而有障礙、能發影的,是屬于“聚”這個粗的色(極微堆起來的粗的東西),不是屬于極微。
“豈異極微,許有聚色發影爲障?”這是論主反問他們的話。你們說聚色能夠發影、能夠障礙,但是離開極微,還有什麼聚色?聚色…
《唯識二十論述記講記 第二十講》全文未完,請進入下頁繼續閱讀…